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Common Random Fixed Point and
Random Best Approximation in

Non-Starshaped Domain of q-Normed Spaces

Hemant Kumar Nashine

Abstract. The aim of this paper is to obtain some common random
fixed point by extending the concept of uniformly R-subweakly com-
muting mappings to the case of non-starshaped domain in q-normed
space. Random best approximation results have also been obtained
as its application. This work provides extension as well as substantial
improvement of some results in the existing literature.

1. Introduction and Preliminaries

In this paper the following definitions have been used:

Definition 1.1. [8]. Let (Ω,A) be a measurable space and X be a metric
space. Let 2X be the family of all nonempty subsets of X and C(X ) denote
the family of all nonempty compact subsets of X . A mapping T : Ω →
2X is called measurable (respectively, weakly measurable) if, for any closed
(respectively, open) subset B of X , T −1(B) = {ω ∈ Ω : T (ω) ∩ B 6= ∅} ∈ A.
Note that, if T (ω) ∈ C(X ) for every ω ∈ Ω, then T is weakly measurable if
and only if measurable.

A mapping ξ : Ω → X is said to be measurable selector of a measurable
mapping T : Ω → 2X , if ξ is measurable and, for any ω ∈ Ω, ξ(ω) ∈ T (ω).
A mapping T : Ω × X → X is called a random operator if, for any x ∈ X ,
T (., x) is measurable. A measurable mapping ξ : Ω → X is called a random
fixed point of a random operator T : Ω × X → X , if for every ω ∈ Ω,
ξ(ω) = T (ω, ξ(ω)).

For the detail of q-normed space, we refer the reader to Köthe [13] and
Rudin [21, page 36 and 37].

Let X be a q-normed space. A map T : X → X is said to be
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(1) a uniformly asymptotically regular on X if, for each η > 0, there
exists N(η) = N such that ‖Tnx−Tn+1x‖q < η for all η ≥ 0 and all
x ∈ X .

(2) S-nonexpansive, if there exists a self-map S on X such that

‖T x− T y‖q ≤ ‖Sx− Sy‖q for all x, y ∈ X .

(3) asymptotically S-nonexpansive, if there exists a sequence {kn} of real
numbers with kn ≥ 1 and limn→∞kn = 1 such that ‖T nx−T ny‖q ≤
(kn)q‖Sx− Sy‖q for all x, y ∈ X and n = 1, 2, 3, ..∞.

Two maps T ,S : X → X are called
(4) R-weakly commuting, if there exists some R > 0 such that

‖T Sx− ST x‖q ≤ R‖T x− Sx‖q for all x ∈ X .

Suppose p ∈ Fix(S), M ⊂ X is p-starshaped and both T and S are
invariant. Then T and S are said to be

(5) R-subweakly commutating onM, if there exists a real numberR > 0
such that

‖T Sx− ST x‖q ≤ Rdist(Sx, [T x, p])

for all x ∈ M where dist (Sx, [T x, p]) = inf{‖Sx− z‖ : z ∈ [T x, p]}
and [T x, p] = {kT x + (1 − k)p : 0 ≤ k ≤ 1}. Obviously, commuta-
tivity implies R-subweak commutativity but the converse is not true
in general [23].

(6) uniformly R-subweakly commuting on M−{p} if there exists a real
number R > 0 such that

‖T nSx− ST nx‖q ≤ Rdist(Sx, [T nx, p])

for all x ∈M− {p} and n ∈ N [2].

It is clear from (6) that uniformly R-subweakly commuting mappings
on M− {p} are R-subweakly commuting on M− {p}, but R-subweakly
commuting mappings on M−{p} need not be uniformly R-subweakly com-
muting on M−{p}.

A random operator T : Ω×X → X is continuous (respectively, nonexpan-
sive, S-nonexpansive) if, for each ω ∈ Ω, T (ω, .) is continuous(respectively,
nonexpansive, S-nonexpansive). Random operators T ,S : Ω × X → X
are R-weakly commuting (respectively R-subweakly commuting, uniformly
R-subweakly commuting), if T (ω, .) and S(ω, .) are R-weakly commuting
(respectively R-subweakly commuting, uniformly R-subweakly commuting)
for each ω ∈ Ω.

Definition 1.2. Let X be a complete q-normed space whose dual X ′ sep-
arates the points of X and M be a subset of X . The map T : M → X is
said to be demiclosed at 0 if for every sequence {xn} in M such that {xn}
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converges weakly to x and {T xn} converges strongly to 0 ∈ X , then 0 = T x.
The space X is said to satisfy Opial’s condition if for every sequence {xn}
in X weakly convergent to x ∈ X , the inequality lim infn→∞ ‖xn − x‖q <
liminfn→∞‖xn− y‖q holds for all y 6= x. Every Hilbert space and the space
lq(1 ≤ q < ∞) satisfy Opial’s condition.

We now introduce the property (N) and (C) [12].

Definition 1.3. A set M is said to have property (N) if
(i) T : M→M,

(ii) (1 − µn)p + µnT nx ∈ M, for some p ∈ M and a fixed sequence of
real numbers µn (0 < µn < 1) converging to 1 and for each x ∈M.

A mapping S is said to have property (C) on a set M with the property
(N) if S((1− µn)p + µnT nx) = (1− µn)Sp + µnST nx for each x ∈M and
n ∈ N .

We extend the concept of uniformly R-subcommuting maps to non-star-
shaped domain in the following way:

Let S and T be self-maps on the set M having property (N) with
p ∈ Fix(S). Then S and T are called uniformly R-subweakly commut-
ing on M− {p}, provided for all x ∈ M, there exists a real number R > 0
such that

‖T nSx− ST nx‖q ≤ Rdist(Sx, [T nx, p])
for all x ∈ M − {p}, where [T nx, p] = (1 − µn)p + µnT nx, and {µn} is a
sequence of real numbers with µn ∈ [0, 1] and limn→∞ µn = 1. Each T -
invariant p-starshaped set has property (N) but not conversely in general.
Each affine map on a p-starshaped set M satisfies property (C).

Definition 1.4. [8]. Let M be a nonempty subset of a q-normed space X .
For x0 ∈ X , let us define

dist(x0,M) = inf
y∈M

‖x0 − y‖q

and
PM(x0) = {y ∈M : ‖x0 − y‖q = dist(x0,M)}.

An element y ∈ PM(x0) is called a best approximant of x0 out of M. The
set PM(x0) is the set of all best approximation of x0 out of M.

Probabilistic functional analysis is an important mathematical discipline
because of its applications to probabilistic models in applied problems. Ran-
dom operator theory is needed for the study of various classes of random
equations. The theory of random fixed point theorems was initiated by the
Prague school of probabilistic in 1950s. The interest in this subject enhanced
after publication of the survey paper by Bharucha Reid [9]. Random fixed
point theory has received much attention in recent years(see [4, 19, 20, 25]).

Random fixed point theorems and random approximations are stochastic
generalization of classical fixed point and approximation theorems, and have
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application in probability theory and nonlinear analysis. The random fixed
point theory for self-maps and non-self maps has been developed during the
last decade by various author, (see e.g. [3, 4, 11]). Recently, this theory has
been further extended for 1-set contractive, nonexpansive, semi-contractive
and completely continuous random maps, etc.

Random fixed point theorems have been applied in many instances in
the field of random best approximation theory and several interesting and
meaningful results have been studied. The theory of approximation has be-
come so vast that it intersects with every other branch of analysis and plays
an important role in the applied sciences and engineering. Approximation
theory is concerned with the approximation of functions of a certain kind
by other functions. In this perspective, in the year 1963, Meinardus [16]
was first to observe the general principle and to use a Schauder fixed point
theorem. Later on, number of results were developed in this direction under
different conditions following the line made by Meinardus (see [3, 4, 6, 8]).

In the year 1996, Beg and Shahzad [6] gave the random version of invariant
approximation for the pair of commuting linear mapping for compact and
starshaped subset of normed space. Subsequently, in the year 2000, Beg and
Shahzad [8] gave the random version of invariant approximation for pair of
noncommuting linear mapping for compact and starshaped subset of Banach
space. It was further improved and extended by Nashine [18] by considering
R-subweakly commuting and uniformly R-subweakly commuting maps on
the starshaped domain and affinity of random operators S.

Attempt has been made to extend the results of Nashine [18] by extending
the concept of uniformly R-subweakly commuting mappings to the case of
non-starshaped domain and relaxing the affinity of random operators S in
q-normed space. As application, some invariant approximation results have
also been determined. Incidently, results of Beg and Shahzad [6, Theorem
2], Beg and Shahzad [8, Theorem B] and Nashine [17] are improve and
generalized with the aid of more general class of noncommuting random
operators and relaxing the condition of linearity of random operators S.
Our results also give stochastic version generalization of common fixed point
theorem of Dotson [10] and invariant approximation theorem of Sahab et
al. [22], Singh [24] and Shahzad [23].

The following result is needed in the sequel:

Theorem 1.1 ([18]). Let M be a subset of a q-normed space X and T ,S :
Ω×M→M be two random operators such that, for each ω ∈ Ω, T (ω,M−
{p}) ⊆ S(ω,M−{p}) where p ∈ Fix(S). Suppose T is continuous and

d(T (ω, x), T (ω, y)) ≤ k(ω)d(S(ω, x),S(ω, y))

for all x, y ∈M, ω ∈ Ω and k(ω) ∈ (0, 1) such that S(ω, x) 6= S(ω, y). If T
and S are R-weakly commutative on M−{p}, then T and S have a unique
common random fixed point.
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2. Main results

Following result is extension of Theorem 3.4 [18] in the case of non-
starshaped domain of q-normed space:

Theorem 2.1. Let M be a nonempty compact subset of a q-normed space
X and let T ,S : Ω×X → X be uniformly R-subweakly commutative random
operators on M− {p} such that for each ω ∈ Ω. Assume that M has the
property (N), S(ω,M) = M and T (ω,M− {p}) ⊆ S(ω,M− {p}) where
p ∈ Fix(S). Suppose T is continuous, asymptotically S-nonexpansive with
sequence {kn} and S(ω, .) satisfies property (C). For each n ≥ 1, define a
random operator Tn(ω, .) by Tn(ω, x) = µn(ω)T n(ω, x) + (1 − µn(ω))p, x ∈
M, where µn(ω) = λn(ω)

kn(ω) and λn(ω) ∈ (0, 1) such that limn→∞λn(ω) = 1.
Then for each n ≥ 1, Tn and S have exactly one common random fixed point.

Proof. For all x, y ∈M, we have
‖Tn(ω, x)− Tn(ω, y)‖q = [µn(ω)]q‖T n(ω, x)− T n(ω, y)‖q

≤ [λn(ω)]q‖S(ω, x)− S(ω, y)‖q.

Also, Tn is a self-mapping of M such that Tn(M− {p}) ⊆ S(M− {p})
for each n. From the uniformly R-subweakly commutativity of S and T on
M−{p} and property (C) of S, it follows that

‖Tn(ω,S(ω, x))− S(ω, Tn(ω, x))‖q

= ‖µn(ω)T n(ω,S(ω, x)) + (1− µn(ω))p−
− S(ω, µn(ω)T nx + (1− µn(ω)p))‖q

= [µn(ω)]q‖T n(ω,S(ω, x))− S(ω, T n(ω, x))‖q

≤ [µn(ω)]qR dist(S(ω, x), [T n(ω, x), p])

≤ [µn(ω)]qR ‖µn(ω)T n(ω, x) + (1− µn(ω))p− S(ω, x)‖q

≤ [µn(ω)]qR ‖Tn(ω, x)− S(ω, x)‖q

for all x ∈ M − {p}. Thus Tn and S are [µn(ω)]qR-weakly commut-
ing. Therefore, Theorem 1.1 implies that there exists a random fixed point
ξn(ω) of Tn and S such that ξn(ω) = S(ω, ξn(ω)) = Tn(ω, ξn(ω)) for each
ω ∈ Ω. �

The following theorem is the common random fixed point results for uni-
formly R-subweakly commuting mappings in the case of non-starshaped
domain of q-normed space:

Theorem 2.2. Let M be a nonempty subset of a q-normed space X and let
T ,S : Ω×X → X be continuous random operator such that for each ω ∈ Ω.
Assume that M has the property (N) with p ∈ S(ω, p), S(ω,M) = M and
T (ω,M− {p}) ⊆ S(ω,M− {p}) where p ∈ Fix(S). Suppose T is uni-
formly asymptotically regular, asymptotically S-nonexpansive with sequence
{kn(ω)} and S(ω, .) satisfies property (C). If T ,S be uniformly R-subweakly
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commutative random operators on M, then there exists a measurable map
ξ : Ω →M such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω)) for each ω ∈ Ω, if one
of the following conditions is satisfied:

(1) M is compact and S is continuous;
(2) X be a complete q-normed space whose dual X ′ separates the points of

X , M is weakly compact, S is weakly continuous and (S −T n)(ω, .)
is demiclosed at 0;

(3) S is weakly continuous, M is weakly compact and X be a complete
q-normed space whose dual X ′ separates the points of X satisfying
Opial’s condition.

Proof. From Theorem 2.1, for each n ≥ 1, there exists exactly one point in
M such that

S(ω, ξn(ω)) = ξn(ω) = µn(ω)T n(ω, ξn(ω)) + (1− µn(ω))p.

Also

‖ξn(ω)− T n(ω, ξn(ω))‖q = (1− µn(ω))q‖T n(ω, ξn(ω))− p‖q.

Since T (M− {p}) is bounded and kn(ω) → 1 as n → ∞, it follows that
‖ξn(ω)− T n(ω, ξn(ω))‖q → 0. Now

‖ξn(ω)− T (ω, ξn(ω))‖q ≤ ‖ξn(ω)− T n(ω, ξn(ω))‖q

+ ‖T n(ω, ξn(ω))− T n+1(ω, ξn(ω))‖q

+ ‖T n+1(ω, ξn(ω))− T (ω, ξn(ω))‖q

≤ ‖ξn(ω)− T n(ω, ξn(ω))‖q

+ ‖T n(ω, ξn(ω))− T n+1(ω, ξn(ω))‖q

+ [k1(ω)]q‖S(ω, T n(ω, ξn(ω)))− S(ω, ξn(ω))‖q.

Since S is continuous, satisfies property (C) and T is uniformly asymptoti-
cally regular, we have

‖ξn(ω)− T (ω, ξn(ω))‖q ≤ ‖ξn(ω)− T n(ω, ξn(ω))‖q

+ ‖T n(ω, ξn(ω))− T n+1(ω, ξn(ω))‖q

+ [k1(ω)]q‖S(ω, T n(ω, ξn(ω)))− ξn(ω)‖q

as n →∞. Thus T (ω, ξn(ω))− ξn(ω) → 0 as n →∞.
(1) Since M is compact, therefore, in the line of Theorem 3.1 [18], there

exists a subsequence {ξm} of {ξn} such that ξm(ω) → ξ(ω) ∈ M as
m →∞. By the continuity of T , we have T (ω, ξ(ω)) = ξ(ω). Since
T (M− {p}) ⊂ S(M− {p}), it follows that ξ(ω) = T (ω, ξ(ω) =
S(ω, ζ(ω)) for some ζ(ω) ∈M. Moreover,

‖T (ω, ξm(ω))− T (ω, ζ(ω))‖q ≤ [k1(ω)]q‖S(ω, ξm(ω))− S(ω, ζ(ω))‖q

= [k1(ω)]q‖ξm(ω)− ζ(ω)‖q.
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Taking the limit as m →∞, we get T (ω, ξ(ω)) = T (ω, ζ(ω)). Thus,
ξ(ω) = T (ω, ξ(ω)) = T (ω, ζ(ω)) = S(ω, ζ(ω)). Since S and T are
uniformly R-subweakly commuting on M−{p}, it follows that

‖T (ω, ξ(ω))− S(ω, ξ(ω))‖q = ‖T (ω,S(ω, ζ(ω)))− S(ω, T (ω, ζ(ω)))‖q

≤ R‖T (ω, ζ(ω))− S(ω, ζ(ω))‖q = 0.

Hence, we have T (ω, ξ(ω)) = S(ω, ξ(ω)) = ξ(ω).
(2) SinceM is weakly compact, therefore, in the line of Theorem 3.2 [18],

there exists a subsequence {ξm} of {ξn} such that ξm(ω) → ξ(ω) ∈
M as m →∞. Now, from weakly continuity of S, we have

S(ω, ξ(ω)) = S(ω, lim
m→∞

ξm(ω)) =

= lim
m→∞

S(ω, ξm(ω)) =

= lim
m→∞

ξm(ω) = ξ(ω).

Now,

S(ω, ξm(ω))− T m(ω, ξm(ω)) = ξm(ω)− T m(ω, ξm(ω))

= Tm(ω, ξm(ω))− T m(ω, ξm(ω))

= (1− µm(ω))(p− T m(ω, ξm(ω))).

Since M is bounded and µm(ω) → 1, it follows that

‖S(ω, ξm(ω))− T m(ω, ξm(ω))‖q → 0.

Since (S−T m)(ω, .) is demiclosed at 0, so S(ω, ξ(ω)) = T m(ω, ξ(ω))
and so, S(ω, ξ(ω)) = T m(ω, ξ(ω)) = ξ(ω). It is remaining to show
that T (ω, ξ(ω)) = ξ(ω).

‖T (ω, ξ(ω))− T m(ω, ξ(ω))‖q = ‖T (ω, ξ(ω))− T (ω, T m−1(ω, ξ(ω)))‖q

≤ [k1(ω)]q‖S(ω, ξ(ω))− S(ω, T m−1(ω, ξ(ω)))‖q,

‖T (ω, ξ(ω))− ξ(ω)‖q ≤ [k1(ω)]q‖ξ(ω)− S(ω, ξ(ω))‖q

= [k1(ω)]q‖ξ(ω)− ξ(ω)‖q = 0.

a contradiction. Hence T (ω, ξ(ω)) = ξ(ω) which implies T (ω, ξ(ω)) =
S(ω, ξ(ω)) = ξ(ω).

(3) As in (2), S(ω, ξ(ω)) = ξ(ω) and ‖(S − T m)(ω, ξm(ω))‖q → 0 as
m → ∞. If S(ω, ξ(ω)) 6= T m(ω, ξ(ω)), then by Opial’s condition of
X and asymptotically S-nonexpansiveness of T , it follows that
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lim inf
m→∞

‖S(ω, ξm(ω))− S(ω, ξ(ω))‖q

< lim inf
m→∞

‖S(ω, ξm(ω))− T m(ω, ξ(ω))‖q

< lim inf
m→∞

‖S(ω, ξm(ω))− T m(ω, ξm(ω))‖q

+ lim inf
m→∞

‖T m(ω, ξm(ω))− T m(ω, ξ(ω))‖q

< lim inf
m→∞

‖T m(ω, ξm(ω))− T m(ω, ξ(ω))‖q

≤ [km(ω)]q‖S(ω, ξm(ω))− S(ω, ξ(ω))‖q

a contradiction. Hence S(ω, ξ(ω)) = T m(ω, ξ(ω)) = ξ(ω). We can
show that T (ω, ξ(ω)) = S(ω, ξ(ω)) as in (2). �

Following are the extension of Theorem 3.6 and Theorem 3.7 [18] in the
setting of domain which is not necessarily non-starshaped and relaxing the
linearity of random operator S respectively:

Theorem 2.3. Let X be a q-normed space. Let T ,S : Ω × X → X be
continuous random operators and M ⊆ X such that T (ω, .) : ∂M∩M →
M, where ∂M stands for the boundary of M. Let x0 = T (ω, x0) = S(ω, x0)
for each x0 ∈ X and ω ∈ Ω. Suppose T is uniformly asymptotically regular,
asymptotically S-nonexpansive and S(ω, .) satisfies property (C) on PM(x0)
with S(ω,PM(x0)) = PM(x0). If PM(x0) is nonempty, has the property
(N) with p ∈ S(ω, p) and T and S are uniformly R-subweakly commuting
mappings on PM(x0) ∪ {x0} satisfying ‖T (ω, x)− T (ω, x0)‖q ≤ ‖S(ω, x)−
S(ω, x0)‖q, then there exists a measurable map ξ : Ω → PM(x0) such that
ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω)) for each ω ∈ Ω, if one of the following
conditions is satisfied:

(1) PM(x0) is compact and S is continuous;
(2) X be a complete q-normed space whose dual X ′ separates the points

of X , PM(x0) is weakly compact, S is weakly continuous and (S −
T n)(ω, .) is demiclosed at 0;

(3) S is weakly continuous, PM(x0) is weakly compact and X be a com-
plete q-normed space whose dual X ′ separates the points of X satis-
fying Opial’s condition.

Proof. Let y ∈ PM(x0). Then ‖y − x0‖q = dist(x,M). Note that for any
t(ω) ∈ (0, 1),

‖t(ω)x0 + (1− t(ω))y − x0‖q = (1− t(ω))q‖y − x0‖q < dist(x0,M).

It follows that the line segment {t(ω)x0+(1−t(ω))y : 0 < t(ω) < 1} and the
set M are disjoint. Thus y is not in the interior of M and so y ∈ ∂M∩M.
Since T (∂M∩M) ⊂M, T x must be in M. Also since S(ω, y) ∈ PM(x0),
x0 = T (ω, x0) = S(ω, x0) and therefore by the given contractive condition,
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we have

‖T (ω, y)− x0‖q = ‖T (ω, y)− T (ω, x0)‖q ≤
≤ ‖S(ω, x)− S(ω, x0)‖q =

= ‖S(ω, y)− x0‖q = dist(x0,M).

Consequently PM(x0) is T (ω, .)-invariant. Hence,

T (ω,PM(x0)) ⊆ PM(x0) = S(ω,PM(x0)).

Thus, the result follows from Theorem 2.2. �

Define CSM(x0) = {x ∈ M : Sx ∈ PM(x0)} and DSM(x0) = PM(x0) ∩
CSM(x0) [1].

Theorem 2.4. Let X be a q-normed space. Let T ,S : Ω × X → X be
random operators and M ⊆ X such that T (ω, .) : ∂M → M, where ∂M
stands for the boundary of M. Let x0 = T (ω, x0) = S(ω, x0) for each x0 ∈
X and ω ∈ Ω. Suppose T is continuous, uniformly asymptotically regular,
asymptotically S-nonexpansive and S(ω, .) be nonexpansive PM(x0) ∪ {x0}
and satisfies property (C) on D = DSM(x0) with S(ω,D) = D. If D is
nonempty, has the property (N) with p ∈ S(ω, p) and and T and S are
uniformly R-subweakly commuting mappings on PM(x0) ∪ {x0} satisfying
‖T (ω, x)−T (ω, x0)‖q ≤ ‖S(ω, x)−S(ω, x0)‖q, then there exists a measurable
map ξ : Ω → PM(x0) such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω)) for each
ω ∈ Ω if one of the following conditions is satisfied:

(1) D is compact and S is continuous;
(2) X be a complete q-normed space whose dual X ′ separates the points

of X , D is weakly compact, S is weakly continuous and (S−T n)(ω, .)
is demiclosed at 0;

(3) S is weakly continuous, D is weakly compact and X be a complete
q-normed space whose dual X ′ separates the points of X satisfying
Opial’s condition.

Proof. Let y ∈ D, then S(ω, y) ∈ D, since S(ω,D) = D for each ω ∈ Ω.
Also, if y ∈ ∂M and so T (ω, y) ∈M, since T (ω, ∂M) ⊆M for each ω ∈ Ω.
Now since x0 = T (ω, x0) and T is S-nonexpansive map, we have

‖T (ω, y)− x0‖q = ‖T (ω, y)− T (ω, x0)‖q ≤ ‖S(ω, y)− S(ω, x0)‖q.

As S(ω, x0) = x0, we therefore have,

‖T (ω, y)− x0‖q ≤ ‖S(ω, x0)− x0‖q = dist(x0,M),

since S(ω, y) ∈ PM(x0). This implies that T (ω, y) is also closest to x0,
so, T (ω, y) ∈ PM(x0); consequently PM(x0) is T (ω, .)-invariant, that is,
T (ω, .) ⊆ PM(x0). As S is nonexpansive on PM(x0) ∪ {x0}, so for each
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ω ∈ Ω, we have

‖S(ω, T (ω, y))− x0‖q = ‖S(ω, T (ω, y))− S(ω, x0)‖q ≤ ‖T (ω, y)− x0‖q

= ‖T (ω, y)− T (ω, x0)‖q ≤ ‖S(ω, y)− S(ω, x0)‖q

= ‖S(ω, y)− x0‖q.

Thus, S(ω, T (ω, y)) ∈ PM(x0). This implies that T (ω, y) ∈ CSM(x0) and
hence T (ω, y) ∈ D. So, T (ω, .) and S(ω, .) are self-maps on D. Hence,
all the condition of the Theorem 2.2 are satisfied. Thus, there exists a
measurable map ξ : Ω → D such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω)) for
each ω ∈ Ω. �
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